

Detecting Transient Surface Features via Dynamic Landmarking

MOC E11-02045 (5/03)

AISR PI Meeting

Kiri L. Wagstaff (PI)
Adnan Ansar,
Ron Greeley,
Mary Pendleton Hoffer,
Julian Panetta,
and Norbert Schörghofer

October 14, 2009

MOC S13-00818 (12/06)

This work was funded by the NASA AISR Program and carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2009, California Institute of Technology.

Dynamic Landmarking

- Landmarks: visually salient, sparse content representation
- Innovation
 - Generic feature detector: can discover unexpected features
 - Change detection without image registration
 - Compare landmark sets

MOC, June 2000

MOC, April 2002

Accomplishments

Technical

- Landmark detection
- Landmark classification
 - 94% accuracy (n=788)
- Change detection

Software

- GUI for landmark annotation (RockIT)
- GUI for change annotation (MatchGUI)
- Discussions with PDS about integrating meta-data

Science

- Dust devils: analysis of dust lifting in Gusev using track area
- Dark slope streaks: seasonality of formation rates

Publications and Presentations

- Fall AGU, Dec. '08:
 - "Automatic Landmark Identification in Mars Orbital Imagery"
- Invited talk, LPI, May '09:
 - "Automated Surface Feature Identification in Mars Orbital Images"
- Invited talk, Univ. of Utah, Nov. '09:
 - "Detecting Changes on Mars with Dynamic Landmarking"

NASA

Landmark Detection:

Contrast-Weighted Histogram Salience

For each pixel, compute salience with respect to window

$$S(p) = \sum_{i=0}^{255} h(i)|p-i|$$

Salience Map (win=50x50)

Landmark Detection Results

Landmark Detection Results

Landmark Detection: Dust Devil Tracks

MOC E11-02045

Window size = 250

Change Detection: Landmark Graph Matching

Julian Panetta, summer internship, 2009

Landmark Matching

- Hungarian/Kuhn-Munkres algorithm: O(n³)
 - Finds best assignment (matching), using landmark similarity

$$Similarity(L_1, L_2) = \frac{F(L_1) \cdot F(L_2)}{\|F(L_1)\| \|F(L_2)\|}$$

- Features do not include absolute x,y position
 - Translation invariance

Changes in Manual Landmarks (k=0)

Matching New

7/10 correct matches

Relative Landmark Graph

- Invariance to camera orientation
- Nodes: landmarks + features
 - Intensity, area, perimeter, ellipse fit, etc.
- Edges: k-nearest neighbors
 - Using Euclidean distance
 - Choice of k?

RLG Graph Matching

- Regular matching ignores connectivity
- Solution: augment similarity with neighborhood similarity
 - Average to get match score

Changes in Manual Landmarks (k=0)

RLG Edges Matching New

7/10 correct matches

Changes in Manual Landmarks (k=1)

RLG Edges Matching New

7/10 correct matches

Changes in Manual Landmarks (k=2)

RLG Edges Matching New

10/10 correct matches

Changes in **Detected** Landmarks

RLG Edges Matching New

3/12 correct matches

Affine Transformation Needed

- Mars and landmarks form a rigid surface
 - Landmarks cannot arbitrarily move around
 - In contrast to, say, boats on water
 - Affine: permit only <u>rotation</u>, <u>translation</u>, <u>scaling</u>, <u>shear</u>
- New approach (in progress)
 - Use initial matching as a starting point
 - RANSAC: repeatedly pick 3 matched pairs, estimate affine transformation, compute match error, pick best
 - Match error: sum of distances from landmarks to closest match, after transform is applied
 - Assign match using transform
 - Can detect both new and vanished!

- Challenge: registration
 - Many sources of local registration errors
 - This is the headache landmarks hope to avoid
- Approach
 - Noise suppression: spectral analysis in Fourier domain
 - Correlation for coarse alignment (scale and rotation)
 - Multi-pass correlation refinement
 - Use sparse points to create Delaunay triangulation
 - Local non-linear warping within triangles to improve match

MOC M03-06336, 8/99

MOC E03-02374, 4/01

To interpret changes, can perform landmarking on difference image.

Summary and Year 3 Plans

- Landmarks: obtain image content, change detection
- Continue PDS discussions for landmark integration
- Change detection
 - Finish RANSAC/affine implementation for robust matching
 - Change detection across instruments, e.g. MOC/THEMIS
- Science goals
 - Analyze other features: fresh impact craters, wind streaks
- Publication plans: Computers & Geosciences, AGU, LPSC
- More info: http://landmarks.jpl.nasa.gov/
 - kiri.wagstaff@jpl.nasa.gov

This work was funded by the NASA AISR Program and carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2009, California Institute of Technology.